Chapter 1.5-1.10 Review

Pre-Calculus

Name Reg

Find all real solutions.

1.
$$3x^2 + 25x = -28$$

$$\frac{94}{425} (2x+2t)(3x+4)=0$$

$$\frac{425}{25} (x+7)(3x+4)=0$$

$$\frac{425}{25} (x+7)(3x+4)=0$$

4.
$$x^3y - 4xy = 0$$

$$xy(x^2-4) = 0$$

 $x = 0, 12$
 $y = 0$

7.
$$x + 5 = 14 - \frac{1}{2}x$$

10.
$$x^4 - 3x^2 + 2 = 0$$

2. $27x^3 = 64$

5.
$$(a^2 + 1)^2 - 12(a^2 + 1) = -20$$

$$U = a^{2} + 1$$

$$U^{2} - 12U + 20 = 0$$

$$(U - 10)(U - 2) = 0$$

$$(^{2} + 1 - 10)(a^{2} + 1 - 2) = 0$$

$$(a^2+1+10)(a^2+1-2)=0$$

 $(a^2-9)(a^2-1)=0$

$\begin{array}{c|c} \hline (8.) & \chi & = 3 \\ \hline \times & \times & \times \\ \hline \end{array}$

$$\chi^{2}-3 = (2\chi-3)(\chi+1)$$

 $\chi^{2}-3 = 2\chi^{2}+2\chi-3\chi-3$
 $0=\chi^{2}-1\chi$

11.
$$3|x-4|=10$$

$$|X-4| = \frac{10}{3}$$

$$X-4=\frac{10}{3}$$
 $X-4=\frac{10}{3}$

$$X = \frac{23}{3}$$
 $X = \frac{2}{3}$

3. $x^3 - 3x^2 = 4x - 12$

$$(x^{3}-3x^{3}/4x+12)=0$$

$$(x^{2}(x-3)-4(x-3)=0$$

$$(x^{2}-4)(x-3)=0$$

$$(x+2)(x-2)(x-3)=0$$

$$(x+2)(x-2)(x-3)=0$$

per.

6.
$$x^{\frac{1}{2}} + 3x^{\frac{-1}{2}} = 10x^{\frac{-3}{2}}$$

 $x^{\frac{1}{2}} + 3x^{\frac{-1}{2}} = 10x^{\frac{-3}{2}}$

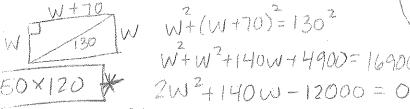
$$\chi^{-3/2} \left(\chi^2 + 3\chi - 10 \right) = 0$$

$$\chi^{-3/2} \left(\chi^2 + 3\chi - 10 \right) = 0$$

$$\chi^{-3/2} \left(\chi + 5 \right) (\chi - 2) = 0$$

$$\chi = - 4 + 2 + 8$$

9.
$$x^2 - x - 12 = 0$$


$$(X-4)(X+3)=0$$

Word Problems.

12. Find three consecutive integers whose sum

$$\begin{array}{c}
 1 + 0 + 1 + 10 + 2 = 360 \\
 3 + 3 = 360 \\
 3 + 3 = 357 \\
 0 + 119,120,121
 \end{array}$$

14. A rectangular parcel of land is 70 ft longer than it is wide. Each diagonal between opposite corners is 130 ft. What are the dimensions of the parcel?

$$W^{2}+(W+70)^{2}=130^{2}$$

 $W^{2}+W^{2}+140W+4900=16900$

$$2(W^2 + 70W - 6000) = 0$$

$$X = -70 \pm \sqrt{70^2 - 4(1)(-6000)} - 70 \pm \sqrt{29900} - 70 \pm 170$$

$$2(1)$$

$$2 = 2 \times \sqrt{2} \times \sqrt$$

13. If Ben invests \$3000 at 4% interest per year, how much additional money must he invest at 5.5% annual interest to ensure that the interest he receives each year is 4.5% of the total amount invested?

$$.04(3.000) + .055 \times = .045(3000 + x)$$
 $.04(3.000) + .055 \times = .045(3000 + x)$
 $.04(5.000) + .055 \times = .055(3000 + x)$
 $.05(5.000) + .055(3000$

length is 9 ft greater than its height, and its width is 4 ft less than its height. What is the height of the box?

$$h(h+9)(h-4) = 180$$

$$n^{3} + 5h^{2} - 36h = 180$$

$$n^{3} + 5h^{2} - 36h - 180 = 0$$

$$n^{2}(h+5) - 36(h+5) = 0$$

$$(h+6)(h-6)(h+5) = 0$$

$$\frac{100}{2} (10 + 5) = 0$$

$$\frac{100}{2} (10 + 5) = 0$$

$$\frac{100}{2} (10 + 5) = 0$$

Solve each inequality. Write the answer using interval notation, and sketch the solution on the real number line. -

$$16^{\circ} -4 < 5 - 3x \le 17$$

$$-94-3\times \leq 12$$

 $3> \times \geq -4$

$$\frac{2x-3}{19} \le 1$$

$$1^{\frac{8}{4}}$$
. $x^3 + x^2 > 2x$

$$X^{3}+X^{2}-2X>0$$

$$\times(\chi^2+\chi-2)>0$$

$$x = 0, 1, -2$$

$$\times \times 7$$
, $\times > 11$

Describe and sketch the regions given by each set.

Find the center and radius of each circle.

26.
$$x^2 + y^2 = 25$$
.

d × 7°

27.
$$(x-2)^2 + (y+1)^2 = 9$$

28.
$$x^2 + 6x + y^2 - 2y + 6 = 0$$

Find the equation of the circle.

29. Centered at (-2,2); passes through (0,2)

$$(0+2)^{2}+(2-2)^{2}=r^{2}$$

$$4+0=r^{2}$$

$$r=2$$

$$[(x+2)^{2}+(y-2)^{2}=4]$$

30. Centered at (-1,1); passes through (2,0)

$$(2+1)^{2} + (0-1)^{2} = r^{2}$$

$$9+1=r^{2}$$

$$10=r^{2}$$

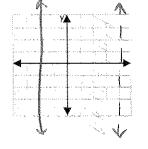
$$(\chi+1)^{2} + (y-1)^{2} = 10$$

Find an equation for the line with the given property.

31. It passes through the point (3, -6) and is parallel to the line 3x + y - 10 = 0.

$$-6 = -3(3) + 6$$

 $-6 = -9 + 6$
 $3 = 6$


32. It has x-intercept 6 and y-intercept 4.

$$\frac{4-0}{0-6} = \frac{4}{-6} = \frac{-2}{3}$$

$$\sqrt{-0=\frac{2}{3}(\chi-6)}$$
 $\sqrt{-\frac{2}{3}\chi+4}$

Describe and sketch the regions given by each set.

$$20. \ \{(x,y) - 2 \le x < 4\}$$

23. Plot the points P(0, 3), Q(3, 0), and R(6, 3) in the coordinate plane.

- a) Where must the point S be located so that PQRS is a square? (5. 6)
- b) Find the area of PQRS

21.
$$\{(x,y)|x-2|>3\}$$
1-2-3 or 1-2-3

24. Let P(-3, 1) and Q(5, 6) be two points in the coordinate plane.

Plot P and Q in the coordinate plane.

Find the distance between P and Q. (32.52.1) Prind the midpoint of the segment PQ. (32.52.1) Prind the slope of the line that contains P and Q.

Find the perpendicular bisector of the line that contains P and Q. pt (1,1/2) m = 1/2
Find an equation for the circle for which the segment PQ is the diameter.

$$(x-1)^{\frac{2}{3}} (y^{-\frac{3}{2}})^{\frac{2}{3}} = \frac{89}{4}$$

25. Find the x and y intercepts of the graph of

a)
$$y = x^2 - 4$$
.
 $x - int : set_{y=0}$ | $y = x^2$.
 $0 = x^2 - 4$ | $1 = 0 - 4$
 $1 = x^2$
 $1 = x^2$

b)
$$y = \frac{2x}{x+1}$$

 $x - int:$
 $0 = \frac{2x}{x+1}$
(0, 0)